Differential Geometry IV: General Relativity

G. Moschidis18 Dec. 2024

14.1 Let (Σ^3, g) be a smooth Riemannian manifold. We will say that (Σ, g) is asymptotically flat with n asymptotically flat ends if there exists a compact subset $\mathcal{K} \subset \Sigma$ such that $\Sigma \setminus \mathcal{K}$ has n connected components $\Sigma_1, \ldots, \Sigma_n$ and, for each of them, there exists a diffeomorphism $\Phi_i : \Sigma_i \to \mathbb{R}^3 \setminus B_1(0)$ with the following property: In the Cartesian coordinates (x^1, x^2, x^3) associated to this diffeomorphism, the components of the metric g satisfy for any $m \in \mathbb{N}$:

$$\partial^m (g_{ij} - \delta_{ij}) = O(r^{-m-1})$$
 as $r \to +\infty$,

where $r = \left(\sum_{i=1}^{3} (x^i)^2\right)^{\frac{1}{2}}$. For any asymptotically flat end Σ_l , we will define the ADM mass $(M_{ADM})_l$ as the limit (in these coordinates)

$$M_{ADM} = \frac{1}{16\pi} \lim_{r \to +\infty} \int_{S_r} \left(\sum_{i,j=1}^3 \left(\partial_j g_{ij} - \partial_i g_{jj} \right) N^i dA \right),$$

where S_r is the coordinate sphere of radius r, N is the normal to S_r (with respect to the flat metric) and dA is the volume form on S_r induced by the flat metric.

(a) Show that the value of the ADM mass in each asymptotically flat end is invariant under coordinate transformations of the form $x \to x + c + F(x)$, where $c \in \mathbb{R}^3$ is a constant and $F : \mathbb{R}^3 \to \mathbb{R}^3$ satisfies

$$\partial^m F = O(r^{-m-1})$$
 for all $m \in \mathbb{N}$

(coordinates in this class are usually called asymptotically Euclidean).

- (b) Show that the slice $\{t=0\}$ in the maximally extended Schwarzschild spacetime with mass parameter M>0, equipped with its induced metric, is asymptotically flat with two asymptotically flat ends. Show that the ADM mass of each end is equal to M.
- *(c) Let $(\mathbb{R}^3; \bar{g}^{(\epsilon)}, k^{(\epsilon)})$ be a smooth family of initial data sets for the Einstein equations

$$\operatorname{Ric}_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi\epsilon T_{\mu\nu}$$

with $\epsilon \geqslant 0$, such that $\bar{g}_{ij}^{(0)} = \delta_{ij}$ and $k^{(0)} = 0$ for all $\epsilon \geqslant 0$. Assume that $(\mathbb{R}^3; \bar{g}^{(\epsilon)})$ is asymptotically flat for all $\epsilon \geqslant 0$. Defining $h = \frac{d}{d\epsilon} \bar{g}^{(\epsilon)}\Big|_{\epsilon=0}$ to be the linearization of \bar{g}^{ϵ} around $\epsilon = 0$, show that

$$\sum_{i,j=1}^{3} \left(-\partial_i^2 h_{jj} + \partial_i \partial_j h_{ij} \right) = 16\pi T(\hat{n}, \hat{n})$$

(Hint: Compute the linearization of the Hamiltonian constraint equation.) Deduce that, if the energy momentum tensor T satisfies the positive energy condition $T(\hat{n}, \hat{n}) \geq 0$, then

$$\left. \frac{d}{d\epsilon} M_{ADM}^{(\epsilon)} \right|_{\epsilon=0} \geqslant 0.$$

Differential Geometry IV: General Relativity

G. Moschidis18 Dec. 2024

Remark. The above is a special case of the following fundamental result, proven in two different ways by Schoen-Yau (1979) and Witten (1981):

The positive mass theorem: Let (Σ^3, \bar{g}, k) be an asymptotically flat initial data set for the Einstein equations for a matter field satisfying the dominant energy condition (e.g. vacuum, scalar field, etc). Then the ADM mass of each asymptotically flat end satisfies $M_{ADM} \geq 0$, with equality if and only if (Σ, \bar{g}, k) is a trivial initial data set, i.e. $\Sigma = \mathbb{R}^3$ and (\bar{g}, k) are the induced metric and second fundamental form of a Cauchy hypersurface of Minkowski spacetime (if k = 0, this implies that \bar{g} is the flat Euclidean metric).

*14.2 In this exercise, we will show that the \dot{H}^1 norm of solutions to the wave equation on Schwarzschild exterior remains uniformly bounded in time. For the rest of the exercise, let (\mathcal{M}, g_M) be the maximally extended Schwarzschild spacetime of mass M>0. Let also Σ_0 be a spacelike hypersurface such that we have $\Sigma_0=\{t=0\}$ in the region $r\geqslant R_0$ for some given $R_0>2M$ (with respect to the usual (t,r,θ,φ) coordinates on region I) and Σ_0 intersects \mathcal{H}^+ transversally. For convenience, we can choose Σ_0 to be rotationally invariant. We will also denote with V the stationary Killing vector field of Schwarzschild (with $V=\frac{\partial}{\partial t}$ in the usual (t,r,θ,φ) coordinates). We will also denote with $\Phi_t^{(V)}$ the (isometric) flow map of V (which is simply the time translation map in the usual coordinate system) and

$$\Sigma_{\tau} = \Phi_{\tau}(\Sigma_0).$$

- (a) Draw how Σ_0 and Σ_{τ} , $\tau \geqslant 0$, look like on the Penrose diagram.
- (b) Let Y be a future directed null vector field defined along \mathcal{H}^+ such that Y is invariant under the flow of V (hence, in any coordinate system in which V is a coordinate vector field, the components of Y are constant in the corresponding coordinates) and satisfies the normalization condition $\langle Y, V \rangle = -2$. Show that $\langle \nabla_V Y, V \rangle = 2\kappa > 0$, where κ depends only on M (this is known as the surface gravity of the event horizon). Show also that $\nabla_V V = \kappa V$ along \mathcal{H}^+ Hint: Work in one of the coordinate systems that we have already seen are regular across r = 2M, for instance the $(t^*, r, \theta, varphi)$ coordinate system from Ex. 8.2.)
- (c) Let \mathcal{D} denote the future domain of dependence of Σ_0 intersected with the region I. Extend the vector field Y constructed above on \mathcal{D} in such a way that Y remains invariant under the flow of V, Y = 0 for $r \geq R_0$ and satisfies along \mathcal{H}^+ : $\nabla_Y Y = -\sigma(V + Y)$ for some $\sigma > 0$ to be fixed in a moment. Set

$$N = V + Y$$
.

Show that N is everywhere timelike on $clos \mathcal{D}$. In particular, deduce that, for any smooth function ψ , the following lower bound holds:

$$\int_{\Sigma_{\tau}} J_{\mu}^{(N)}[\psi] \hat{n}^{\mu} \geqslant C \int_{\Sigma_{\tau}} \left(|\bar{\nabla}\psi|^2 + |\hat{n}(\psi)|^2 \right) \operatorname{dvol}_{\Sigma_{\tau}},$$

Differential Geometry IV: General Relativity

G. Moschidis18 Dec. 2024

where \hat{n} is the timelike future directed unit normal to C > 0 is independent of $\tau \ge 0$ and ψ . On the other hand, show that for the Killing vector field V we similarly have

$$\int_{\Sigma_{\tau}} J_{\mu}^{(V)}[\psi] \hat{n}^{\mu} \geqslant c_{r_0} \int_{\Sigma_{\tau} \cap \{r \geqslant r_0\}} \left(|\bar{\nabla} \psi|^2 + |\hat{n}(\psi)|^2 \right) \operatorname{dvol}_{\Sigma_{\tau}}$$

for any $r_0 > 2M$ (but with c_{r_0} degenerating as $r_0 \to 2M$, in view of the fact that V becomes timelike there; we will say that the energy density associated to V degenerates at \mathcal{H}^+ , while that associated to N is non-degenerate). Moreover, provided σ has been chosen large enough in terms of κ , the following bound holds on \mathcal{H}^+ for any smooth function ψ :

$$T_{\mu\nu}[\psi]\nabla^{(\mu}N^{\nu)} \geqslant cJ_{\mu}^{(N)}[\psi]N^{\mu},$$

where c > 0 is independent of ψ .

(d) Let us denote

$$E^{(V)}[\psi](\tau) \doteq \int_{\Sigma_{\tau}} J_{\mu}^{(V)}[\psi] \hat{n}^{\mu}, \quad E^{(N)}[\psi](\tau) \doteq \int_{\Sigma_{\tau}} J_{\mu}^{(N)}[\psi] \hat{n}^{\mu}.$$

Using the divergence identity for $J^{(V)}$, show that, for any smooth solution ψ of $\Box_g \psi = 0$ arising from compactly supported initial data on Σ_0 , we have for any $r_0 > 2M$:

$$\sup_{\tau \geqslant 0} \int_{\Sigma_{\tau} \cap \{r \geqslant r_0\}} \left(|\bar{\nabla}\psi|^2 + |\hat{n}(\psi)|^2 \right) d\text{vol}_{\Sigma_{\tau}} \leqslant C_{r_0} E^{(V)}[\psi](0).$$

(e) Similarly, using the divergence identity for $J^{(N)}$ and the estimates established above for N, show that for any smooth solution ψ of $\square_g \psi = 0$ arising from compactly supported initial data on Σ_0 and any $\tau \geqslant 0$:

$$E^{(N)}[\psi](\tau) + c \int_0^{\tau} \int_{\Sigma_{\tau} \cap \{r \leqslant R_0\}} \left(|\bar{\nabla}\psi|^2 + |\hat{n}(\psi)|^2 \right) \operatorname{dvol}_{\Sigma_s} ds \leqslant C E^{(N)}[\psi](0) + C \int_0^{\tau} E^{(V)}[\psi](s) \, ds$$

for some constants c, C > 0 independent of τ, ψ (note that the spacetime integral above on the left hand side is trivially controlled by the left hand side in a region away from r = 2M; in the vicinity of r = 2M, one has to employ the properties established for $T_{\mu\nu}[\psi]\nabla^{(\mu}N^{\nu)}|_{r=2M}$ earlier). Deduce that, from the inequalities established earlier (for possibly different constants C, c):

$$E^{(N)}[\psi](\tau) + c \int_0^{\tau} E^{(N)}[\psi](s) \, ds \leqslant C\Big(E^{(N)}[\psi](0) + \tau E^{(V)}[\psi](0)\Big).$$

(f) Deduce that

$$\sup_{\tau \geqslant 0} E^{(N)}[\psi](\tau) < +\infty.$$