EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
Series 14 General Relativity 18 Dec. 2024

14.1 Let (X3, g) be a smooth Riemannian manifold. We will say that (3, g) is asymptotically flat
with n asymptotically flat ends if there exists a compact subset K C ¥ such that ¥\ K
has n connected components ¥q,..., >, and, for each of them, there exists a diffeomorphism
®; : ¥; — R3\ B1(0) with the following property: In the Cartesian coordinates (z',2?% x3)
associated to this diffeomorphism, the components of the metric g satisfy for any m € N:

37”(9@- — (523) = O(’/‘_m_l) as r — 400,

N

where r = ( 2) . For any asymptotically flat end ¥;, we will define the ADM mass
(Mapar): as the hmlt (in these coordinates)

3
1 i

o= [ (3 (a0 va)

where S, is the coordinate sphere of radius r, N is the normal to S, (with respect to the flat
metric) and dA is the volume form on S, induced by the flat metric.

(a) Show that the value of the ADM mass in each asymptotically flat end is invariant under
coordinate transformations of the form = — = + ¢+ F(x), where ¢ € R? is a constant and
F : R® — R3 satisfies
O"F =0 ™) forallmeN

(coordinates in this class are usually called asymptotically Fuclidean).

(b) Show that the slice {¢ = 0} in the maximally extended Schwarzschild spacetime with
mass parameter M > 0, equipped with its induced metric, is asymptotically flat with two
asymptotically flat ends. Show that the ADM mass of each end is equal to M.

*(c) Let (R g9, k9) be a smooth family of initial data sets for the Einstein equations
) 1
Ric,, — §ng, = 8mel},,

with € > 0, such that g(0 = &;; and K = 0 for all € > 0. Assume that (R3g) is

to be the linearization of g°

asymptotically flat for all ¢ > 0. Defining h = ag()
e=0

around € = 0, show that
3
Z ( - 0z2hm + azﬁyh”) == 167T(ﬂ, fl)
ij=1

(Hint: Compute the linearization of the Hamiltonian constraint equation.) Deduce that,
if the energy momentum tensor 7 satisfies the positive energy condition 7'(n,7n) > 0, then

d

— > 0.
de APM| o~
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Remark. The above is a special case of the following fundamental result, proven in two
different ways by Schoen—Yau (1979) and Witten (1981):

The positive mass theorem: Let (32, g, k) be an asymptotically flat initial data set for the
Einstein equations for a matter field satisfying the dominant energy condition (e.g. vacuum,
scalar field, etc). Then the ADM mass of each asymptotically flat end satisfies Mapy, > 0,
with equality if and only if (3, g, k) is a trivial initial data set, i.e. ¥ = R® and (g, k) are the
induced metric and second fundamental form of a Cauchy hypersurface of Minkowski spacetime
(if £ = 0, this implies that g is the flat Euclidean metric).

In this exercise, we will show that the H! norm of solutions to the wave equation on Schwarzschild

exterior remains uniformly bounded in time. For the rest of the exercise, let (M, gys) be the

maximally extended Schwarzschild spacetime of mass M > 0. Let also Yy be a spacelike hy-

persurface such that we have ¥y = {¢ = 0} in the region r > Ry for some given Ry > 2M (with

respect to the usual (¢,7,6, ) coordinates on region I) and X intersects H™' transversally. For

convenience, we can choose >, to be rotationally invariant. We will also denote with V' the
)

stationary Killing vector field of Schwarzschild (with V' = 5 in the usual (¢,7,0,¢) coordi-

nates). We will also denote with CIDEV) the (isometric) flow map of V' (which is simply the time
translation map in the usual coordinate system) and

ET == (I)T(Eo)

(a) Draw how ¥y and ., 7 > 0, look like on the Penrose diagram.

(b) Let Y be a future directed null vector field defined along H™ such that Y is invariant
under the flow of V' (hence, in any coordinate system in which V' is a coordinate vector
field, the components of Y are constant in the corresponding coordinates) and satisfies the
normalization condition (Y, V) = —2. Show that (VY V) = 2k > 0, where x depends
only on M (this is known as the surface gravity of the event horizon). Show also that
VvV = kV along H* Hint: Work in one of the coordinate systems that we have already
seen are reqular across r = 2M, for instance the (t*,r,0,varphi) coordinate system from
Ezx. 8.2.)

(c) Let D denote the future domain of dependence of ¥ intersected with the region I. Extend
the vector field Y constructed above on D in such a way that Y remains invariant under
the flow of V, Y = 0 for r > Ry and satisfies along H': VyY = —o(V +Y) for some
o > 0 to be fixed in a moment. Set

N=V+Y.

Show that N is everywhere timelike on closD. In particular, deduce that, for any smooth
function 1, the following lower bound holds:

/ JM > C / (V4P + () ) dvols,

T
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(f)

where 7 is the timelike future directed unit normal to C' > 0 is independent of 7 > 0 and
1. On the other hand, show that for the Killing vector field V' we similarly have

W > ey [ (96 4 () ) dvols,

pI Srn{r>ro}

for any ro > 2M (but with ¢,, degenerating as 19 — 2M, in view of the fact that V/
becomes timelike there; we will say that the energy density associated to V' degenerates at
H*, while that associated to N is non-degenerate). Moreover, provided ¢ has been chosen
large enough in terms of &, the following bound holds on H* for any smooth function :

T [W]VENY) > cJ M []IN*",

where ¢ > 0 is independent of 1.

Let us denote

EV[)(r) = / TV, EV)(r) = / TNl

T

Using the divergence identity for J("), show that, for any smooth solution 1 of e =0
arising from compactly supported initial data on ¥y, we have for any rq > 2M:

sup [ (V0 [a(w)?) dvols, < €, BV [u1(0)
720 JE n{r>r}

Similarly, using the divergence identity for J®¥) and the estimates established above for
N, show that for any smooth solution ¢ of Lgp = 0 arising from compactly supported
initial data on ¥y and any 7 > 0:

EOe [ (FURH@R) dvols, ds < CEVI0)+C [V lyi(s) s

0

for some constants ¢, C' > 0 independent of 7,1 (note that the spacetime integral above
on the left hand side is trivially controlled by the left hand side in a region away from
r = 2M; in the vicinity of r = 2M, one has to employ the properties established for
T [W]V#NY)| _ - earlier). Deduce that, from the inequalities established earlier (for
possibly different constants C, ¢):

Bl + e [ BVl ds < C(EVI0) + rEVlul0)
Deduce that
sup EM[](1) < 400.
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